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EXECUTIVE SUMMARY

by

Bradford Butman



INTRODUCTION

Two major field experiments were conducted as part of the North Atlantic
Slope and Canyon Study: the Lydonia Canyon Experiment and the Slope
Experiment. These studies were initiatied by the U.S. Minerals Management
Service (MMS) and the U.S. Geological Survey (USGS) as interest in oil and gas
exploration in the North Atlantic region moved offshore to the continental
slope from the southern flank of Georges Bank. The major objectives of the
field program were to provide a regional description of currents and sediment
transport on the outer shelf and upper slope and within submarine canyons, and
to understand the processes which cause sediment transport. A long-range goal
of the program was to assess the long-term fate of material introduced into
the water column or seafloor along the margin.

The continental slope 1is a relatively narrow transition region between
the continental shelf and continental rise (fig. 1). Along the east coast of
the United States, the texture of the surficial sediment changes from
primarily sand to finer grained silt and clay just seaward of the shelf break,
indicating a transition from an active sedimentary environment on the shelf to
a more depositional environment on the upper slope. Because anthropogenic
pollutants often are associated with fine-grained particles (Bothner and
others, in press; Farrington and Boehm, in press; Morel and Schiff, 1983;
Huggett and others, 1980) over long periods of time the slope may be a region
of accumulation for these contaminants. Therefore, it 1is possible that
particles introduced by exploratory drilling on the Outer Continental Shelf
(0CS) may ultimately deposit on the continental slope.

The continental slope is dissected by major submarine canyons and
numerous smaller gullies. Scanlon (1984) estimates that on the slope south of

Georges Bank at depths shallower than 1500 m, as much as 80 percent of the
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slope is occupied by these canyons and gullies. The major canyons cut
northward into the shelf as much as 20 km and may capture sediments from the
shelf. The canyons may also provide a source of deep ocean water landward of
the shelfbreak. The role of submarine canyons in the transport of sediment
from the shelf to rise has long been of interest to marine geologists. The
canyons also provide a variety of substrates for marine organisms and the
diverse fauna have been the subject of several studies (Lamont Doherty
Geological Observatory, 1983; Maciolek and others, 1986).

The circulation on the outer shelf and upper slope is a complex
transition between the flow on the shelf and the flow in the deep ocean; a
rich diversity of currents and processes of sediment transport is expected in
this transition region. On the continental shelf, winter storms, tidal
currents, and the westward residuél mean flow are the primary factors which
influence the net transport of sediment (Butman, in press). At the edge of
the shelf, sediment movement may also be caused by internal waves, Gulf Stream
warm core rings, and more complex flows associated with meanders of the Gulf
Stream. Storms will be less important in deeper water because the wave
currents, of major importance in resuspending sediments on the shelf, decrease
rapidly with increasing water depth.

Several other recent field programs provide additional observations of
currents on the outer continental margin. The Lydonia Canyon Experiment
complements studies of Baltimore Canyon in the Middle Atlantic Bight (Lamont
Doherty Geological Observatory, 1983) and of Quinault Canyon off the coast of
Oregon (Carson and others, 1986). The Shelf Edge Exchange Processes (SEEP)
study (Department of Energy) conducted along 70° W; and the Mid-Atlantic Slope
and Rise study (MASARS) funded by MMS, provide observations to the west of

those made as part of the Slope Experiment (Csanady and others, submitted).



Understanding the fate of pollutants and sediments introduced onto the shelf
and slope, which is provided by these and other programs, is essential for

sound management of the resources of the continental margin.

FIELD MEASUREMENTS

Lydonia Canyon Experiment

The Lydonia Canyon Experiment was conducted over a two-year period. The
components of the program were: (1) detailed bathymetric surveys of the
canyon and the adjacent shelf and slope; (2) surveys of the surficial sediment
texture; (3) longterm measurements by an array of moored current meters,
bottom tripods and sediment traps; (4) synoptic hydrographic observations; (5)
bottom surveys utilizing sidescan sonographs and high resolution acoustic
profiles; and (6) surveys of the canyon utilizing a research submersible. All
of these field measurements were designed to describe the shelf and canyon
environments and the transport of water and sediment within and between
them. Lydonia Canyon was selected for study because it was closest to the
exploratory drilling sites (fig. 1).

The moored array experiments were the largest component of the canyon
experiment. Five deployments of instruments were made between November 1980
and November 1982 (table 1; fig. 2). The measurements were designed to
document the flow within the canyon and near the bottom over the shelf and
slope. Measurements were made throughout most of the experiment at LCA, LCB,
LCE (or LCS), and LCI (fig. 2) to provide continuity between deployments and
to assess long—term variability at typical shelf, canyon, and slope
stations. In all of the moored array experiments, instruments were deployed
on the shelf and slope and in the canyon at depths above and below the canyon
rim (fig. 3). Limited observations were made at two stations in Oceanographer

Canyon (fig. 1) to compare the current regimes of two major canyons.



Table 1. Dates of moored array deployments and hydrographic cruises conducted as part of
the Lydonia Canyon Experiment and the Slope Experiment. Roman numerals
indicate moored array deployments. Stations indicate the 1locations where
moorings were deployed in each experiment (see fig. 2 and 8).

Deployment Date Cruise Stations
Start Stop

Lydonia Canyon Experiment
I November 1980 OCEANUS 88 LCA, LCC, LCD, LCF, LCG, LCM
I December 1980 OCEANUS 90 LCA, LCB, LCE, LCH, LCI, LCJ

LCK, LCL, LCM, LCN

January 1981 OCEANUS 91  LCO
I1 I April 1981 OCEANUS 95  LCA, LCB, LCE, LCI
I1I II September 1981 OCEANUS 104 LCA, LCB, LCE, LCI, LCO, LCP
IV III January 1982 OCEANUS 113 LCA, LCB, LCI, LCL, LCO, LCQ

LCR, LCS, LCT, OCA, OCB, OCC
v v July 1982 OCEANUS 122 LCA, LCB, LCU

\Y November 1982 OCEANUS 130

Slope Experiment

I November 1982 OCEANUS 130 SA, SB, SC, SD, SE
I1 I October 1983 OCEANUS 140 SA, SE, SF
III 1I March 1984 OCEANUS 149 SA, SE, SF, SG, SH, T
I11 November 1984 OCEANUS 159
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Figure 2b. Location of moorings deployed in Lydonia Canyon and on the
adjacent shelf and slope. Not all.stations were occupied

simultaneously (see text).



or

sjuswnijsuf pue s3urioow Jo UOTIED0T Bulmoys uolue) BTUOPAT JO UOTIVIS-SS0ID pue deuw oseg

9yl o3 adoTs ay3l s93BOTPUT SUTT (paysep) pailoQ

{s1213woiy) 4i0qos! W OOI WOHI JONVLISK
az v (22 91 r4} ]

P T T 7T 17 1T 77

3d07S PUC JIIHS 1SIM
3d01S Pud JI13IHS 1SVI
TIVM 1SIM

IIVM iSv3

SiXv

* 4 4 @ D

(1861 YdY - 0861 ¥IBWIAON)
I 1IN3WAOYd30

&
(W) H1d3Q

02,00

*uoAued a2yl Jo (3Isea) Isom
*Aeaae poioouw 3yl jo T Juswhopdaqg utg

34nSSIud W01108 ()

Q0diuL M0NIvHS O

VW LNINNBLISH 4330 Y e 1
W ¢ p

1861 NHdV - 0861 AON - 4100
I IN3WAOIE3a

AVHEY Q3HOOW
NOANVD wiNOGAT

T S S L N

0619

‘¢ @an31g

05.49

—
Sulim wm wxe.-bu'l—

102,00

0808




Hydrographic observations were made on all mooring deployment and
recovery cruises, and on one cruise midway through Deployment I (table 1).
The cruise track for OCEANUS 91 is typical for these hydrographic cruises
(fig. 4); sections were made across the shelf both to the east and west of
Lydonia, along the canyon axis, and across the axis, near both the mouth and
head of the canyon. At each station, a Neil Brown Instrument Systems profiler
was used to measure temperature, pressure, conductivity, light transmission (a
measure of the amount of suspended material in the water), and oxygen. These
hydrographic sections show the location of the shelf-water/slope-water front,
the 1influence of Gulf Stream warm core rings, and the changes in the
hydrographic structure between shelf and canyon.

EG&G Vector Averaging Current Meters (VACMs) deployed on taut subsurface
moorings were used in the canyon experiment (fig. 5). Some of the VACMs were
modified to also measure pressure, light transmission, or light transmission
and conductivity (to determine salinity). Two specialized instrument packages
were used to document near—bottom currents and sediment movement. A bottom
tripod system that measured near-bottom current, temperature, pressure, and
light transmission, and photographed the sea—-floor was deployed at stations
around the head of Lydonia Canyon (Butman and Folger, 1979; fig. 6). A second
instrument package, which measured the same variables except pressure, was
used in the canyon axis where the bottbm tripod system was unsuitable because
of the rough topography (fig. 7). Sediment traps of several sizes and shapes
were deployed on the subsurface moorings to estimate particle flux and the

physical and chemical composition of the suspended material.
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Figure 4. Cruise track for OCEANUS 91, typical of the hydrographic cruises
made as part of the Lydonia Canyon Experiment.
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MOORING 204 (TRIPOD)
207(SUBSURFACE)

STATION LCA, SHELF

LATITUDE : 40°34.21' N

LONGITUDE : 67°4455'W

DEPTH ¢ 100M

A G~ SURFACE MARKER
BuOY

30M 1/2" CHAIN

Q 37" SPHERE

I0M 3/8" CHAIN

7 M— 1
4 SEDIMENT TRAP (STI02) 60M 3/8 WIRE

2M 3/8" CHAIN
VACM W/ TRANSMISSION
8OM — 8 CONDUCTIVITY
{v628TC)

I5M 3/8" CHAIN

TRIPOD
95M ﬂ RELEASE W/

SEDIMENT TRAP (STI00)
2M 3/8"CHAIN

- :7oous wsr WEIGHT 1700 LB WE
v W 100M % WJ‘W/ANCHL WET WEIGHT

90M /2" CHAIN

Schematic of mooring 204 and 207 at LCA, typical of moori9gs
deployed on the shelf as part of the Lydonia Canyon Experiment,.
The surface buoys mark the location to help flsherman avoid the

site.

Figure 5a.
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MOORING 211

STATION LCE, CANYON AXIS
LATITUDE :40° 25.38'N

LONGITUDE : 67°3988'W
DEPTH : 600M

ACTALAR NN
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: oM 3/8" CHAIN

6 M % VACM W/ TRANSMISSION (V442T)

88M 3/16" WIRE
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A 4
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00O

(4) 17" GLASS BALLS

5M 3/8" CHAIN
SEDIMENT TRAP (STH8)
2M 3/8" CHAIN

435M™ y
% VACM W/ PRESSURE (ViiIP)

44iM
25M 3/16" WIRE

34M 3/16" WIRE
50M 3/16" WIRE

(20} 17" GLASS BALLS

00

IOM 3/8" CHAIN
58/ M ——— Y SEDIMENT TRAP (STIIT)
12M 3/8" CHAIN

SWIVEL
Eﬂ DEEP INSTRUMENT PACKAGE (V5I8T,STlI4)

SWIVEL
2M 3/8" CHAIN

600M — 2200 LB WET WEIGHT ANCHOR W/
/ 12 LB DANFORTH ATTACHED DIRECTLY
7

Figure 5b. Schematic of mooring at LCE, typical of moorings deployed in
Lydonia Canyon and on the continental slope as part of the

Lydonia Canyon Experiment.
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Slope Experiment

The Slope Experiment included long-term measurements by an array of
current meters and sediment traps and synoptic hydrographic observations.
Three deployments of instruments were made between November 1982 and
November 1984 (table 1; fig. 8). The instruments were deployed in two cross-—
slope transects, one near 69°30' W and one near 70° W. Additional moorings
along the slope at 500 m were used to assess along-slope coherence and
variability. Instruments were maintained at 100 meters above bottom (mab) at
station SE and SA throughout most of the experiment to assess long-term
variability. During deployment 3, moorings were deployed on a 1local
topographic high (station SG) and in an adjacent topographic low (station SH)
at about 1200-m water depth to compare these slope environments. Measurements
of sediment texture and infauna were also made at these locations as part of
the Study of Biological Processes on the North Atlantic Slope and Rise
(Maciolek and others, 1986). Hydrographic observations were made on all
mooring deployment and recovery cruises. The cruise track for OCEANUS 140,
where eight sections were made across the outer shelf to the upper slope

(fig. 9), is typical of the hydrographic cruises.

RESULTS

Canyon Geometry and Sediment Texture

Lydonia Canyon, as defined by the 200 m isobath, cuts northward into the
northwestern Atlantic Continental margin approximately 20 km from the shelf
edge (figs. 1, 10). The canyon is only a few kilometers (km) wide near the
head and about 5 km wide near the mouth at the edge of the shelf. The canyon
axis is sinuous, and there are numerous side gullies and spurs along the

walls., Deep Submersible Research Vessel (DSRV) ALVIN dives show that the
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Figure 10. Bathymetric map of Lydonia Canyon (simplified from Butman
and Moody, 1984).
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canyon walls are almost vertical in some parts of the axis at axis depths
below about 400 m. The average slope of the walls ranges from 10-20° while
the slope along the axis floor is 1-5°.

The surficial sediment on the southern flank of Georges Bank becomes
gradually finer to the west and toward deeper water, primarily reflecting the
strength of the tidal currents (Butman, in press). Superimposed on this
regional pattern are smaller scale changes apparently associated with the
canyons. Finer grained sediments, primarily very fine sand and silt, occur in
lobes about 10 km wide both to the east and west of Lydonia Canyon
(fig. 11). Along the axis of the canyon, there are significant changes in the
texture of the surficial sediments. Increased concentrations of silt plus
clay occur near the head around LCB and coarser sediments near LCS and LCE
(fig. 12). At depths greater than 600 m, the sediments are progressively
finer with depth; there is almost no sand at 1600 m.

Based on high-resolution seismic-reflection profiles, Twichell (1983)
iﬁferred that the finer-grained sediments near the canyon head are of Holocene
age, that they are as much as 25 m thick and, in some places, are draped over
the existing topography. Cores obtained near LCU show accumulation rates of
about 60 cm/1000 yrs. Thus the geological and geochemical information——
sediment texture, geometry, and accumulation rates—-which reflect the net
transport of sediment over thousands of years, show that sediments are
accumulating in the head of Lydonia Canyon, at least at depths shallower than
about 500 m¢ The fine sediments deep in the canyon also imply accumulation

there.
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SEDIMENT TEXTURE
% SILT & CLAY

) . 0

; v Zb Km

68°10 66°00' 67°50' ' = - 40°10
0 67°40 67°30 67°20 s

Figure 11. Percent silt plus clay in the surficial sediments on the southern

flank of Georges Bank near Lydonia and Oceanographer Canyons.
Triangles are samples reported by Bothner and others (1985) -and
squares from Hathaway (1971). Circles are samples collected from
this study. Surface texture in the canyons at depths greater than

200 m is not shown in this figure.
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AXIS OF LYDONIA CANYON
SURFACE SEDIMENT TEXTURE
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Figure 12, Surficial sediment texture along the axis of Lydonia Canyon.
Samples were obtained from the submersible ALVIN,
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Currents

The current observations made in Lydonia Canyon and on the shelf and
slope show a rich diversity in the strength, orientation, and frequency of
current fluctuations. Within the canyon, the currents are channelled by the
topography. Currents oscillate up and down—-canyon, primarily at the
semidiurnal tidal period. These current fluctuations are not always in phase
with the well~defined tidal currents on the shelf, and the amplitude of the
fluctuations changes with time. The fluctuations sometimes occur in short
bursts or packets of a few days duration., The current fluctuations are also
not symmetric in time (i.e., the strength and duration of the up~canyon flow
is not the same as the down-canyon flow) especially toward the canyon head.
This assymmetry in flow, which has important implications for the transport of
sediment, probably results from the complicated topography, bottom slope, and
stratification of the water in the canyon. Current fluctuations are
intensified toward the bottom in the canyon.

Above the canyon rim and on the shelf landward of the shelf break, the
currents are dominated by the semidiurnal tidal currents which flow across
isobaths, and by low—frequency currents, some caused by winds, which are
oriented parallel to the isobaths. There is also a well-defined weak residual
flow toward the southwest at 1-5 cm/s. The canyon apparently has 1little
effect on the mean, tidal, or low-frequency currents above the rim.

On the slope, the currents at water depths between about 150 m and 500 m
are strongly influenced by the currents associated with Gulf Stream warm core
rings (fig. 13a). These rings are about 100 km in diameter and are formed
from northward meanders of the Gulf Stream. The rings drift slowly westward
in the slope water until they are reabsorbed by the Gulf Stream near Cape

Hatteras or by interaction with meanders of the stream (Lai and Richardson,
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1977; Halliwell and Mooers, 1979; Richardson, 1983; Joyce, 1984; Beardsley and
others, 1985; Butman, in press). The clockwise circulation around the rings,
sometimes at speeds approaching those in the stream, causes strong eastward
flow along the outer edge of the shelf when the rings drift close to the
shelfbreak. During the Lydonia Canyon Experiment, warm core rings affected
the flow along the outer shelf and upper slope about 30 percent of the time.
During the strongest ring events, eastward currents exceeded 80 cm/s and
influenced the flow to about 500 m along the upper slope. Eastward flows
extended shelfward to about the 150-m isobath at depths above the canyon rim
(LCE) but not to the 110-m isobath (LCB). Rings may affect the flow within
the canyon by generating packets of high—-frequency current fluctuations. Near
the bottom over the slope at LCI, SA, SE, and SF, there was a persistent
downslope Eulerian mean flow.

Along the canyon axis, the net flow near the bottqm was down-canyon at
LCB and up-canyon at LCS (fig. 13b). Net flow was up-canyon at 50 mab at LCB
and was down—canyon 100 mab at LCE. These observations suggest a bottom—
intensified residual circulation that traps material in the canyon head. Net
near-bottom flow at LCE and LCH was weak and not significant. Along the walls
of the canyon at about 200 m, the observations suggest inflow along the
eastern side (at LCF, LCR, and LCD) and outflow on the western side (at LCC,
LCT, and LCG).

The convergence in the mean near-bottom flow toward the canyon head is
one of the most important observations of the canyon experiment. However,
current measurements made at fixed locations, called Eulerian measurements, do
not always indicate the net transport of water or particles (called the
Lagrangian current) if there are large vertical or horizontal changes in the

current field. For example, water particles could travel past the current
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across the canyon above the level of the canyon rim.
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meter and recirculate in relatively small vertical or horizontal cells. The
increase in the residual flow toward the bottom along the axis, where the
current fluctuations are also largest, suggests that the observed net Eulerian
flow is not the trajectory of water particles. The Eulerian flow probably
does reflect the direction of transport of sand (see below).

The near-bottom current speeds (fig. 14) qualitatively reflect the
surficial sediment texture in Lydonia Canyon (fig. 12). Currents were weakest
deep in the canyon at 1600 m at LCH, where there is no evidence for active
sediment movement and the sediments are all silt and clay. Currents were
stronger near the canyon head, and were strongest at about 600 m where the

sediments were coarsest.

Distribution of suspended particles

The hydrographic sections along the axis (fig. 15), the moored
transmissometer observations, and the sediment trap observations (fig. 16) all
indicate increased sediment concentrations in the water near the bottom toward
the head of the canyon. The profiles of beam attenuation show an increase in
particle concentrations in a layer 50 to 100 m thick above the bottom, and the
moored observations show that the concentrations of suspended sediments near
the bottom change .rapidly with time as fine particles are resuspended or
advected past the instrument from elsewhere in the canyon (fig. 17, 18). The
amount of material caught in the sediment traps increased logarithmically
toward the bottom at LCB, suggesting frequent local resuspension. The head of
Lydonia Canyon might be described as an "active sink”, where fine particles
not only accumulate, but are also frequently resuspended from the seafloor.
This resuspension may allow fine particles to strip dissolved pollutants from

the water column. Increased inventories of 210pb and 239'zl'oPu in the
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surfical sediments in the axis are consistent with this hypothesis.

Sediment transport

The transport of sand-sized material along the axis of Lydonia Canyon and
on the adjacent shelf and slope was calculated using the current observations
and a one-dimensional model of sediment transport in the bottom boundary layer
(based on Grant and Madsen, 1979; Grant and Glenn, 1983). The calculated
transports show a net down—canyon transport of sand at the head of the canyon
(at LCU and LCB) and up-canyon transport at LCS (550 m). The calculated
transports qualitatively agree with the measured accumulation rates. Most of
the along—-axis transport is caused by the asymmetrical tidal and higher
frequency current fluctuations. At 1600 m, there was no resuspension or
transport of the existing sediments.

Storms resuspend sediment on the continental shelf. On the southern
flank of Georges Bank, the resuspended sediment is carried primarily parallel
to the shelf isobaths and may intefsect the canyon rim. This is most likely
when the flow over the shelf is to the southwest and the near-bottom flow is
also slightly off-shelf (down-welling). This storm transport should be
largest in shallower water toward the canyon head where oscillatory currents
associated with surface waves enhance the bottom stress.

Sediment traps in the head of Lydonia Canyon trapped 2 to 3 times more
material during winter when storms were frequent than during the tranquil
summer. In addition, the concentration of barium, a major component of the
drilling mud discharged on Georges Bank, increased in the near-bottom sediment
traps deployed in the head of the canyon (station LCB, fig. 2) during the last
deployment of the traps from July to November 1982. This period included the

period of drilling at block 357 and block 273 (fig. 2a), both near Lydonia
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Canyon. In addition, a major storm in October 1982 casued heavy sediment
resuspension on the shelf which may have contributed to the transport from
shelf to canyon. These observations are direct evidence of transport of
sediment from the shelf to the canyon head on time scales less of less than

one year.

Other Canyons

Near-bottom currents measured in Oceanographer Canyon were much stronger
than in Lydonia or Baltimore Canyons (Lamont Doherty Geological Observatory,
1983). For example, at about 600 m in the axis, currents 5 mab exceeded
40 cm/s about 23 percent of the time in Oceanographer Canyon, but only about
10 percent of the time in Lydonia (fig. 14). Sediment traps at comparable
depths along the canyon axis trapped about 1.3 times more material in
Oceanographer than Lydonia. In Oceanographer Canyon, the sediments along the
axis are medium to coarse sand, and there are sand waves or dunes as high as
3 m having wavelengths up to 15 m along the axis from the head to at least
600 m (Valentine and others, 1984). In contrast, the sediments along the axis
of Lydonia are primarily fine and very fine sand, and large bedforms are
observed only in a limited region at about 600 m. The large dunes in
Oceanographer were observed to be asymmetrical down-canyon at about 250 and
600 m water depth and asymmetrical up-éanyon at about 270 and 350 m. These
directions are consistent with the observed net down-canyon Eulerian flow at
227 m and 560 m in Oceanographer, but also suggest cells of net up-canyon and
down-canyon flow along the axis.

Based on these observations, it is clear that the major canyons along the
southern flank of Georges Bank differ in size, shape, and sedimentary

environment. Some of the canyons may trap fine material near their heads
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while in others, the currents are strong enough to winnow and remove all fine
material. Additional surveys of the sediment texture and hydrography are

required to determine the sedimentary environments of other canyons.

Currents on the slope

The near—bottom observations show that the current speed decreases with
depth across the slope. Below about 500 m, currents strong enough to
resuspend the sediments occur only a few percent of the time, and current
speeds weak enough to allow particles to settle occur more than 30 percent of
the time. Particles reaching the seafloor at depths greater than 500 m will
probably remain there.

The net flow over the slope is generally parallel to the isobaths at 1-10
cm/sec. Low-frequency fluctuations, also oriented along isobaths, are about
10-20 cm/s. Fine particles introduced near the surface take days to settle,
and will be dispersed over wide areas before reaching the seafloor. Near the
bottom, the strongest flows occur in the downslope direction and there is a
persistent net downslope flow, both of which cause off-shelf and downslope

transport of sediment near the bottom.

Instrument calibrations

Beam transmissometers were used extensively in the Canyon and Slope
Experiments to indicate the concentration of suspended particles in the water
column. Laboratory calibrations show that the sensitivity of transmissometers
depends on the éize of the particles in the water column as well as
concentration. Thus, in situations where the size as well as the number of
particles change with time, it is extremely difficult to accurately determine

the magnitude of the change in suspended concentration for observed changes in
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light transmission. Additional methods for determining particle size and
concentration as a function of time are needed.

Sediment traps were used to estimate the vertical flux of material
through the water column and to characterize the type of material in
suspension. Based on a field cemparison, traps of different size and shape
collected material at different rates. The relative catch rates differed by
as much as a factor of 5 between the traps used in this experiment and there
is no way to determine which trap, if any, most closely measures the true flux
of particles to the seafloor. Catch rates obtained from traps that have
different hydrodynamic characteristics cannot be compared directly. Sediment
traps must be calibrated in the laboratory for the current speeds and particle

sizes which occur in the field.

MAJOR FINDINGS
The measurements made in the Lydonia Canyon Experiment and the Slope

Experiment show:

1. Sediments from the shelf are transported into the head of Lydonia Canyon
and accumulate there. These fine-grained sediments are frequently
resuspended. Based on elevated inventories of 210pp and 239, 240Pu, the
sediments in Lydonia Canyon scavenge pollutants from the water column.
Thus the head of Lydonia Canyon is a sink for fine sediments and a
potential sink for pollutants introduced onto the shelf.

2. The concentration of barium, a major component of drill muds used during
exploratory drilling on the south flank of Georges Bank, increased in the
head of Lydonia Canyon during the period when exploratory wells were
drilled near the canyon on the shelf. This is Qirect evidence for

transport of shelf material into the canyon.

35



5.

7.

The sedimentary and hydrographic regime in the major canyons on the
southern flank of Georges Bank are not the same. In Oceanographer Canyon,
the surficial sediments along the axis are coarser than in Lydonia and the
currents are stronger. Little fine-grained sediment accumulates in the
head of Oceanographer Canyon.

The current flow pattern within the canyon is complex. There is evidence
for down—-canyon transport near the head in Lydonia, Oceanographer, and
Baltimore Canyons and there is up-canyon transport in Lydonia at depths of
about 500 m. Additional measurements are needed to fully resolve the
spatial variability in the direction of transport along the axis and its
importance in determining the accumulation of sediments along the axis
floor.

The canyons are not tranquil. The strongest flows occur at semidiurnal
tidal periods, but are not always directly coupled to the tide on the
shelf. Short duration packets of fluctuations occur in the canyon, some
apparently generated by the passage of Gulf Stream warm core rings.

Gulf Stream warm core rings strongly affect the flow along the outer edge
of the shelf. There is a net eastward flow in excess of 50 cm/s
associated with the strongest ring events.

Transport of sediment at the outer edge of the shelf is in the downslope
direction. At water depths below 500 m, the currents are rarely strong
enough to resuspend the existing sediments and particles reaching the

seafloor should remain there.
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